Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38666861

ABSTRACT

The prevalent pathogens associated with bovine uterine infections are bacteria that appear to increase the host's susceptibility to secondary infections with other bacteria or viruses, among which BoGHV4 is the most frequently found. In this work, the study of the pathways of apoptosis induction was carried out on an experimental model of primary culture of endometrial cells, in order to know the implication of BoGHV4 and the presence of bacterial LPS in the pathogenesis of the bovine reproductive tract. For this, different staining techniques and molecular analysis by RT-PCR were used. The results obtained allowed us to conclude that the level of cell death observed in the proposed primary culture is directly related to the time of viral infection and the presence of LPS in BoGHV4 infection. The apoptosis indices in cells infected with BoGHV4 and BoGHV4 + LPS revealed a maximum that correlated with the appearance of cytopathic effects and the maximum viral titers in the model studied. However, morphological, biochemical, and molecular changes were evident during both early and late stages of apoptosis. These findings provide information on the factors that may influence the pathogenesis of BoGHV4 and help to better understand the mechanisms involved in virus infection.

2.
Braz J Microbiol ; 54(3): 2461-2469, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37217730

ABSTRACT

Bovine viral diarrhea virus (BVDV) genome consists of a single-stranded, positive-sense RNA with high genetic diversity. In the last years, significant progress has been achieved in BVDV knowledge evolution through phylodynamic analysis based on the partial 5'UTR sequences, whereas a few studies have used other genes or the complete coding sequence (CDS). However, no research has evaluated and compared BVDV evolutionary history based on the complete genome (CG), CDS, and individual genes. In this study, phylodynamic analyses were carried out with BVDV-1 (Pestivirus A) and BVDV-2 (Pestivirus B) CG sequences available on the GenBank database and each genomic region: CDS, UTRs, and individual genes. In comparison to the CG, the estimations for both BVDV species varied according to the dataset used, pointing out the importance of considering the analyzed genomic region when concluding. This study may provide new insight into BVDV evolution history while highlighting the need to increase the available BVDV CG sequences to perform more comprehensive phylodynamic studies in the future.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Animals , Cattle , Genotype , Diarrhea Viruses, Bovine Viral/genetics , Genomics , Phylogeny , Evolution, Molecular , Diarrhea , Genome, Viral
3.
Rev Argent Microbiol ; 55(2): 129-132, 2023.
Article in English | MEDLINE | ID: mdl-36184365

ABSTRACT

Contagious Ecthyma (CE) is a severe exanthematous dermatitis caused by the Orf virus (ORFV) that mainly affects domestic small ruminants such as sheep and goats. It is a worldwide-distributed occupational zoonosis, particularly infecting those in close contact with animals or animal products such as shepherds, farmers and veterinarians, among others. In the present work, we report the first human CE case confirmed in Argentina. A phylogenetic analysis based on four gene sequences of the isolated strain responsible for the disease showed that this isolate grouped with other ORFV sequences that caused reported CE cases in sheep from the same Argentine province. We also sequenced a sample from a Chilean human case reported in 2017, whose phylogenetic analysis showed that it groups together with other Argentine isolates from locations close to the border with Chile.


Subject(s)
Ecthyma, Contagious , Orf virus , Female , Humans , Animals , Sheep , Ecthyma, Contagious/epidemiology , Orf virus/genetics , Phylogeny , Argentina/epidemiology , Goats , Chile/epidemiology
4.
Res Vet Sci ; 153: 66-73, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36327621

ABSTRACT

Bovine viral diarrhea virus (BVDV) is a worldwide distributed pathogen of livestock classified into three species, BVDV-1 (Pestivirus A), BVDV-2 (Pestivirus B), and HoBi-like pestivirus (HoBiPeV; Pestivirus H). Despite being considered endemic in several regions of the Americas, the spatiotemporal distribution of BVDV is scarcely known. This study aimed to reconstruct the population dynamics of BVDV in American countries. The analyses performed with the partial 5´UTR gene showed that BVDV-1 and -2 would have started their diversification in the 1670s and 1790s in the United States, whereas HoBiPeV probably emerged in the 1980s in Brazil. No evident geographic clustering was observed in the Bayesian trees, which may indicate that multiple introductions events would have occurred following the first introduction. This study provides new insights into BVDV dynamics, although further analyses including sequences from other American countries and continents will help to expand the knowledge of BVDV evolution and transmission.

5.
Infect Genet Evol ; 96: 105089, 2021 12.
Article in English | MEDLINE | ID: mdl-34563649

ABSTRACT

Bovine viral diarrhea virus (BVDV) is an important pathogen of ruminants worldwide and is characterized by high genetic diversity and a wide range of clinical presentations. In Argentina, several studies have evaluated the genetic diversity of BVDV but no phylodynamic study has been published yet. In this study, a comprehensive compilation and update of Argentinean BVDV sequences were performed, and the evolutionary history of BVDV was characterized by phylodynamic analyses based on the 5´UTR. Although BVDV-1b and BVDV-1a were the most frequent subtypes, novel subtypes for Argentina, 1e and 1i, were identified. The phylodynamic analysis suggested that BVDV started its diversification in the mid-1650s with an exponential increase in viral diversity since the late 1990s, possibly related to the livestock expansion and intensification in the country. Evolutionary rate in the 5´UTR was faster for BVDV-1a than for BVDV-1b, and both subtypes presented an endemic nature according to the demographic reconstructions. The current study contributes to clarify the evolutionary history of BVDV in the main cattle region of the country and provides useful information about the epidemiology and future development of diagnostic and control tools in Argentina.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Diarrhea Viruses, Bovine Viral/genetics , Genetic Variation , Genome, Viral , Animals , Argentina/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 2, Bovine Viral/genetics , Phylogeny
6.
Braz J Microbiol ; 52(1): 467-475, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33237499

ABSTRACT

Bovine viral diarrhea (BVD) is a major worldwide disease with negative economic impact on cattle production. Successful control programs of BVD require the identification and culling of persistently infected (PI) animals with bovine viral diarrhea virus (BVDV). A variety of diagnostic tests are available to detect BVDV, but no comparison has been performed among those tests in Argentina. Sera collected from 2864 cattle, belonging to 55 herds from three Argentinean provinces, were analyzed by nested RT-PCR (RT-nPCR) to detect BVDV for diagnostic purposes. Additionally, this study evaluated the agreement of the RT-nPCR along with virus isolation, antigen-capture ELISA, and real-time RT-PCR for BVDV detection in archived bovine serum samples (n = 90). The RT-nPCR was useful for BVDV detection in pooled and individual serum samples. BVDV was detected in 1% (29/2864) of the cattle and in 20% (11/55) of the herds. The proportion of BVDV-positive sera was not statistically different among the tests. In addition, comparisons showed high agreement levels, with the highest values between both RT-PCR protocols. The frequency of BVDV infection at individual and herd level was lower than the reported values worldwide. Since follow-up testing was not performed, the frequency of PI cattle was unknown. Also, this study demonstrated that the four diagnostic tests can be used reliably for BVDV identification in individual serum samples. Further epidemiologically designed studies that address prevalence, risk factors, and economic impact of BVDV in Argentina will be necessary to implement effective control programs.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Diarrhea Viruses, Bovine Viral/immunology , Molecular Diagnostic Techniques/standards , Molecular Diagnostic Techniques/veterinary , Serologic Tests/standards , Serologic Tests/veterinary , Animals , Argentina , Cattle , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Limit of Detection , Molecular Diagnostic Techniques/methods , Serologic Tests/methods , Serum
7.
Mol Biol Rep ; 47(12): 9959-9965, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33226564

ABSTRACT

In-vitro fertilization is a routine livestock-breeding technique widely used around the world. Several studies have reported the interaction of bovine viral-diarrhea virus (BVDV) with gametes and in-vitro-produced (IVP) bovine embryos. Since, gene expression in BVDV-infected IVP bovine embryos is scarcely addressed. The aim of this work was to evaluate the differential expression of genes involved in immune and inflammatory response. Groups of 20-25 embryos on Day 6 (morula stage) were exposed (infected) or not (control) to an NCP-BVDV strain in SOF medium. After 24 h, embryos that reached expanded blastocyst stage were washed. Total RNA of each embryo group was extracted to determine the transcription levels of 9 specific transcripts related with antiviral and inflammatory response by SYBR Green real time quantitative (RT-qPCR). Culture media and an aliquot of the last embryos wash on Day 7 were analyzed by titration and virus isolation, respectively. A conventional PCR confirmed BVDV presence in IVP embryos. A significantly higher expression of interferon-α was observed in blastocysts exposed to NCP-BVDV compared to the controls (p < 0.05). In this study, the upregulation of INFα and TLR7 genes involved in inflammatory and immune response in BVDV-infected IVP bovine embryos is a new finding in this field. This differential expression suggest that embryonic cells could function in a manner like immune cells by recognizing and responding early to interaction with viral pathogens. These results provide new insights into the action of BVDV on the complex molecular pathways controlling bovine early embryonic development.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle , Diarrhea Viruses, Bovine Viral/immunology , Embryonic Development/immunology , Gene Expression/immunology , Interferon-alpha , Animals , Bovine Virus Diarrhea-Mucosal Disease/embryology , Bovine Virus Diarrhea-Mucosal Disease/immunology , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle/embryology , Cattle/immunology , Diarrhea Viruses, Bovine Viral/isolation & purification , Embryo, Mammalian/immunology , Embryo, Mammalian/virology , Female , Fertilization in Vitro , Interferon-alpha/immunology , Toll-Like Receptor 7/immunology
8.
Braz J Microbiol ; 51(4): 2077-2086, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32415638

ABSTRACT

Detection of bovine viral diarrhea virus (BVDV) in aborted fetus samples is often difficult due to tissue autolysis and inappropriate sampling. Studies assessing different methods for BVDV identification in fetal specimens are scarce. The present study evaluated the agreement between different diagnostic techniques to detect BVDV infections in specimens from a large number of bovine aborted fetuses and neonatal deaths over a period of 22 years. Additionally, genetic, serological, and pathological analyses were conducted in order to characterize BVDV strains of fetal origin. Samples from 95 selected cases from 1997 to 2018 were analyzed by antigen-capture ELISA (AgELISA), nested RT-PCR (RT-nPCR), and real-time RT-PCR (RT-qPCR). In addition, amplification and sequencing of the 5'UTR region were performed for phylogenetic purposes. Virus neutralization tests against the BVDV-1a, BVDV-1b, and BVDV-2b subtypes were conducted on 60 fetal fluids of the selected cases. Furthermore, the frequency and severity of histopathological lesions were evaluated in BVDV-positive cases. This study demonstrated that RT-nPCR and RT-qPCR were more suitable than AgELISA for BVDV detection in fetal specimens. However, the agreement between the two RT-PCR methods was moderate. The BVDV-1b subtype was more frequently detected than the BVDV-1a and BVDV-2b subtypes. Neutralizing antibodies to any of the three subtypes evaluated were present in 94% of the fetal fluids. Microscopically, half of the BVDV-positive cases showed a mild non-suppurative inflammatory response. These results emphasize the need to consider different methods for a diagnostic approach of BVDV associated to reproductive losses.


Subject(s)
Aborted Fetus/virology , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Diarrhea Viruses, Bovine Viral/classification , Phylogeny , 5' Untranslated Regions , Animals , Antibodies, Neutralizing/immunology , Cattle , Diarrhea Viruses, Bovine Viral/isolation & purification , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Time Factors
9.
Mol Biol Rep ; 47(6): 4905-4909, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32347419

ABSTRACT

Bovine herpevsirus 4 (BoHV-4) is a gammaherpesvirus that has been associated with different clinical conditions in cattle. In Argentina, BoHV-4 was detected in diverse bovine samples. The aim of this study was to analyze the genetic relationship of 48 field BoHV-4 strains isolated from cattle in Argentina. According to thymidine kinase (tk) gene sequences, BoHV-4 isolates belong to genotypes 1, 2 and 3. Phylogenetic analyses confirmed the presence of the three previously described viral genotypes. However, some of the studied isolates presented conflicting phylogenetic signals between the studied markers. This suggests a complex evolutionary background, that is a history of recombination, incomplete lineage sorting (deep coalescence) or a combination of these, which requires further study. These potential events make difficult the diagnosis of BoHV-4 from clinical samples of cattle and may pose a significant problem for the control of the virus in the herds.


Subject(s)
Herpesvirus 4, Bovine/genetics , Thymidine Kinase/genetics , Animals , Argentina , Biological Evolution , Cattle/virology , Cattle Diseases/virology , DNA, Viral/genetics , Evolution, Molecular , Genotype , Herpesvirus 4, Bovine/isolation & purification , Herpesvirus 4, Bovine/pathogenicity , Phylogeny
10.
Theriogenology ; 86(8): 1999-2003, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27481815

ABSTRACT

Structural changes in the zona pellucida (ZP) of bovine oocytes seem to modulate their interaction with various viral agents, facilitating the viral infection in in vitro production systems. To evaluate the susceptibility of bovine oocytes to noncytopathogenic bovine viral diarrhea virus (ncp-BVDV), cumulus-oocyte complexes were exposed to 10(7) ​tissue culture-infective doses (TCID50)/mL of an ncp-BVDV strain during IVM (in vitro maturation). After that, cumulus cells and the ZP were removed by hyaluronidase and pronase treatment, respectively, and the percentages of oocytes with polar body were analyzed as a sign of nuclear maturation. After passage through cell culture, the virus was isolated from granulosa cells, ZP-free mature oocytes, and ZP-intact mature oocytes. These results were confirmed by reverse transcription-polymerase chain reaction. After consecutive washes, the virus remained associated with ZP-free oocytes, maintaining its replication and infectivity in permissive cells. Based on these findings, it is concluded that the classical viral isolation procedure has a predictive value to detect BVDV associated with ZP-free oocytes and that it was novelty demonstrated that both washing and trypsin treatment of oocytes were ineffective to remove BVDV infection.


Subject(s)
Cattle , Cumulus Cells/virology , Diarrhea Viruses, Bovine Viral/isolation & purification , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/virology , Animals , Cell Membrane , Polar Bodies , Zona Pellucida
11.
PLoS One ; 10(7): e0132212, 2015.
Article in English | MEDLINE | ID: mdl-26177382

ABSTRACT

Bovine herpesvirus 4 (BoHV-4) is increasingly considered as responsible for various problems of the reproductive tract. The virus infects mainly blood mononuclear cells and displays specific tropism for vascular endothelia, reproductive and fetal tissues. Epidemiological studies suggest its impact on reproductive performance, and its presence in various sites in the reproductive tract highlights its potential transmission in transfer-stage embryos. This work describes the biological and genetic characterization of BoHV-4 strains isolated from an in vitro bovine embryo production system. BoHV-4 strains were isolated in 2011 and 2013 from granulosa cells and bovine oocytes from ovary batches collected at a local abattoir, used as "starting material" for in vitro production of bovine embryos. Compatible BoHV-4-CPE was observed in the co-culture of granulosa cells and oocytes with MDBK cells. The identity of the isolates was confirmed by PCR assays targeting three ORFs of the viral genome. The phylogenetic analyses of the strains suggest that they were evolutionary unlinked. Therefore it is possible that BoHV-4 ovary infections occurred regularly along the evolution of the virus, at least in Argentina, which can have implications in the systems of in vitro embryo production. Thus, although BoHV-4 does not appear to be a frequent risk factor for in vitro embryo production, data are still limited. This study reveals the potential of BoHV-4 transmission via embryo transfer. Moreover, the high variability among the BoHV-4 strains isolated from aborted cows in Argentina highlights the importance of further research on the role of this virus as an agent with the potential to cause reproductive disease in cattle. The genetic characterization of the isolated strains provides data to better understand the pathogenesis of BoHV-4 infections. Furthermore, it will lead to fundamental insights into the molecular aspects of the virus and the means by which these strains circulate in the herds.


Subject(s)
Embryo, Mammalian/virology , Granulosa Cells/virology , Herpesvirus 4, Bovine/genetics , Oocytes/virology , Animals , Argentina , Bayes Theorem , Cattle , Cells, Cultured , Coculture Techniques , DNA, Viral/analysis , Dogs , Female , Granulosa Cells/cytology , Herpesvirus 4, Bovine/classification , Herpesvirus 4, Bovine/isolation & purification , Madin Darby Canine Kidney Cells , Oocytes/cytology , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...